# Performance of baseball infield soil mixtures using novel laboratory tests

Evan C. Mascitti The Pennsylvania State University 2023-02-15



## MLB gross revenues\*



\*Values inflation-adjusted to 2019 dollars. Data source: Forbes











# Better soil means easier maintenance



small range | difficult to manage





wider range | easier to manage

# Better soil means easier maintenance



small range | difficult to manage





wider range | easier to manage

# But where do these thresholds lie??

# **Current ideas**

- Total sand (55-75 %)
- Sand sizes (>2/3 medium + coarser)



• Silt-to-clay ratio (0.5-1)



# What happens when the soil gets wet?





# Problem statement

• Historically, building and maintaining the infield skin has been considered an art form.

# Problem statement

• Historically, building and maintaining the infield skin has been considered an art form.

 There is no available research on the cleat-in/cleat-out concept - specifically how it is governed by mixture components AND changes in water content.

# Problem statement

- Historically, building and maintaining the infield skin has been considered an art form.
- There is no available research on the cleat-in/cleat-out concept - specifically how it is governed by mixture components AND changes in water content.
- But in order to test the soil, we first need something to measure!

# Objectives

- Develop novel laboratory tests which identify:
  - 1. Lower boundary water content corresponding to cleat-in/cleat-out threshold
  - 2. Upper boundary water content at which the soil can no longer provide adequate shear strength
- Apply new tests to experimental mixtures; evaluate effects of sand content and clay mineralogy on threshold water contents

# 6 chapters:

- Cleat-mark method development
- Cleat-mark mixtures
- Toughness method development
- Toughness mixtures
- Sand properties effects on Atterberg limits (Parts I and II )

## Chapter 1

## A laboratory method for measuring disturbance of baseball infield soil surfaces by cleated footwear

Submitted to Geotechnical Testing Journal

## What happens when the soil gets wet dries out?

# Objective

- Create a laboratory method to measure <u>water content</u> <u>corresponding to the cleat-</u> <u>in/cleat-out threshold</u>







### **Desirable** (ductile i.e. cleat-in/cleat-out)



#### **Undesirable** (brittle i.e. chipping/fracturing)



### **Desirable** (ductile i.e. cleat-in/cleat-out)



#### **Undesirable** (brittle i.e. chipping/fracturing)



# The device simulates pro athlete loads

- Peak load ~ 2.5x body weight (Kent et al., 2012)
- Load duration ~ 100 ms (Nigg et al., 1984)
- Loading angle 70-85° (Donatelli et al., 1999)





















140 mm



10 mm

# Dirichlet Normal Energy

DNE = 1,810





DNE = 2,900

DNE = 4,280



#### Surface performance of four 60-20-20 infield mixes

Mixes contain different clay + added quartz silt



## Chapter 2

Effect of sand content and clay mineralogy on the brittleness of drying baseball infield soils
#### **Experiment:**

- "Pure" clay minerals mixed w/ 55-80% sand
- Kaolinite, illite, smectite
- 18 total mixtures

#### **Objective:**

Determine how clay mineralogy, sand content, and water content interact to govern the cleat-in-cleat-out effect





## Methods

- Cleat mark test performed at ≥9 water contents per soil bracketing θ<sub>critical</sub>
- $\Theta_{critical}$  chosen from plot of DNE against  $\Theta$

# Sand content and clay type interact.

|                         | Sum. Sq. | Deg. Fr. | F-statistic | p-value |
|-------------------------|----------|----------|-------------|---------|
| Intercept               | 3.1e+05  | 1        | 0.350       | 0.555   |
| Sand %                  | 4.3e+07  | 1        | 47.851      | <0.001  |
| Clay type               | 1.0e+07  | 2        | 5.741       | 0.004   |
| VWC (cubic spline term) | 3.8e+07  | 3        | 14.228      | < 0.001 |
| Sand % x clay type      | 1.1e+07  | 2        | 6.248       | 0.002   |
| Residual                | 1.5e+08  | 166      | -           | -       |

#### Clay mineralogy and sand content interact to determine $\theta_{critical}$



#### Clay mineralogy and sand content interact to determine $\theta_{critical}$



#### $\theta_{critical}$ varies by clay mineralogy and sand content.



### Is there a fundamental basis to the cleatin/cleat-out effect?

# An infield mix is a 4-phase system

| Air phase   |
|-------------|
| Water phase |
| Clay phase  |
| Sand phase  |
|             |



#### Transitional sand content



# Transitional sand content

| Clay mineral | Calculated sand content<br>from equation | Maximum sand content to provide cleat-in/cleat-out |
|--------------|------------------------------------------|----------------------------------------------------|
| Illite/I-S   | 72.2                                     | 70-75                                              |
| Kaolinite    | 75.3                                     | 75-80                                              |
| Smectite     | 78.2                                     | 75-80                                              |



Illite, 75% sand

# An infield mix is a 4-phase system

| Air phase   |
|-------------|
| Water phase |
| Clay phase  |
| Sand phase  |
|             |



# Funicular





# Residual





# Funicular



# Residual





## Effective saturation



 $S_e = \frac{V_w}{V_v} = \frac{\theta}{n}$ 

 $\theta_{\text{critical}}$  occurs at  $S_{\text{e}} \approx 1$ .

Relationship holds regardless of sand content or clay mineralogy.



• Lower water content boundary: brittle failure

- Lower water content boundary: brittle failure
- Direct measurement of behavior change w/ water content

- Lower water content boundary: brittle failure
- Direct measurement of behavior change w/ water content
- Clay minerals and sand content interact to govern  $\theta_{critical}$

- Lower water content boundary: brittle failure
- Direct measurement of behavior change w/ water content
- Clay minerals and sand content interact to govern  $\theta_{critical}$
- To achieve CICOE,  $m_{SA}$  < TSC and  $S_e$  approaching 1

#### Chapters 3-4

#### Toughness-water content relations using unconfined compression tests

#### Toughness = energy needed to deform soil to failure

- governs the amount of damage done to the soil when @ high water content
- Important for stable footing when soil is in ductile/plastic condition

#### Computing toughness for one sample



#### Computing toughness for one sample



# Barnes toughness method









## Plastic limit



"In order to classify clays according to their toughness it would be necessary to determine the shearing resistance at the plastic limit by means of a direct shearing test or an unconfined compression test."

-Casagrande (1932)

# ASTM D2166 provides little help re: specimen preparation

"Specimens shall be prepared to the predetermined water content and density prescribed by the individual assigning the test."

#### Research goals

 Develop a method to prepare specimens for unconfined compression testing

 Test a suite of sand-clay mixtures to determine the how clay mineralogy and sand content interact with soil water to determine toughness

• No standard method for remolded samples

- No standard method for remolded samples
- Ideal method optimum density; wet-dry cycle; re-wet.....impractical

- No standard method for remolded samples
- Ideal method optimum density; wet-dry cycle; re-wet.....impractical
- Pack wet-of-optimum

- No standard method for remolded samples
- Ideal method optimum density; wet-dry cycle; re-wet.....impractical
- Pack wet-of-optimum
- Beginning penetrometer resistance of ~0.5 kg cm<sup>2</sup>

- No standard method for remolded samples
- Ideal method optimum density; wet-dry cycle; re-wet.....impractical
- Pack wet-of-optimum
- Beginning penetrometer resistance of ~0.5 kg cm<sup>2</sup>
- Extrude from steel sleeve

- No standard method for remolded samples
- Ideal method optimum density; wet-dry cycle; re-wet.....impractical
- Pack wet-of-optimum
- Beginning penetrometer resistance of ~0.5 kg cm<sup>2</sup>
- Extrude from steel sleeve
- Dry series of samples to pre-computed masses
  - Ensures adequate spread of data points


#### Specimen shrinkage

#### 





#### Stress-strain curves for a single soil

Numbers adjacent to curves denote sample water content.





### What toughness value to compare?

• Toughness is a function of water content

### What toughness value to compare?

Toughness is a function of water content

• Must choose representative value for a given soil

### What toughness value to compare?

Toughness is a function of water content

Must choose representative value for a given soil

 PL widely used and understood; traditional brittle-ductile threshold % sand



% sand



#### Predicted toughness at the plastic limit for sand-clay mixtures



Values computed using spline fit for toughness vs. water<sup>6</sup>content.

# Maximum toughness varies by sand content and interacts with clay type

 Toughness and shear strength increase with drying to ~PL, then decrease once below PL (enhanced brittleness)

# Maximum toughness varies by sand content and interacts with clay type

- Toughness and shear strength increase with drying to ~PL, then decrease once below PL (enhanced brittleness)
- Similar to the findings by Barnes (2009, 2013), Teng (2020), and Nagaraj (2016)

# Maximum toughness varies by sand content and interacts with clay type

- Toughness and shear strength increase with drying to ~PL, then decrease once below PL (enhanced brittleness)
- Similar to the findings by Barnes (2009, 2013), Teng (2020), and Nagaraj (2016)
- More research needed to relate toughness to threshold water content

 Lower boundary measured with cleat- mark test; upper boundary is more difficult to define

- Lower boundary measured with cleat- mark test; upper boundary is more difficult to define
- Range + stiffness may be expanded using higher-plasticity clay but at the cost of maintenance & cracking potential

- Lower boundary measured with cleat- mark test; upper boundary is more difficult to define
- Range may be expanded using higher-plasticity clay but at the cost of maintenance & cracking potential
- Future directions:
  - Develop simpler alternatives to cleat-mark test
  - Relate ball response soil stiffness + plasticity

### Thank you!



Dr. Andrew McNitt

Dr. Patrick Drohan



Dr. Sridhar Komarneni



Dr. Tong Qiu

### Thank you!



### **PENNSYLVANIA** TURFGRASS COUNCIL



The Foundation for Safer Athletic Fields

<section-header>

**Hunter Finn** 



### Thank you!