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Better soil means easier maintenance

small range | difficult to manage

wider range | easier to manage



Better soil means easier maintenance

small range | difficult to manage

wider range | easier to manage

But where do these thresholds lie??
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Current ideas

* Total sand (55-75 %)

 Sand sizes (>2/3 medium + coarser)

« Silt-to-clay ratio (0.5-1)
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Figure credit: DuraEdge Products 13



What happens when the soil gets wet?
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Problem statement

» Historically, building and maintaining the infield skin has
been considered an art form.
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Problem statement

» Historically, building and maintaining the infield skin has
been considered an art form.

* There is no available research on the cleat-in/cleat-out
concept - specifically how it is governed by mixture
components AND changes in water content.
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Problem statement

* Historically, building and maintaining the infield skin has
been considered an art form.

* There is no available research on the cleat-in/cleat-out
concept - specifically how it is governed by mixture
components AND changes in water content.

 But in order to test the soil, we first need something to
measure!

17



Objectives

* Develop novel laboratory tests which identify:

1. Lower boundary - water content corresponding to cleat-in/cleat-out
threshold

2. Upper boundary - water content at which the soil can no longer
provide adequate shear strength

* Apply new tests to experimental mixtures; evaluate effects of
sand content and clay mineralogy on threshold water contents
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6 chapters:

* Cleat-mark method development
 Cleat-mark mixtures
» Toughness method development
* Toughness mixtures

 Sand properties effects on Atterberg limits (Parts I and Il )
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Chapter 1

A laboratory method for measuring
disturbance of baseball infield soil surfaces
by cleated footwear

Submitted to Geotechnical Testing Journal



What happens when the soil gets—+wet dries out?
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Objective

- Create a laboratory method
to measure water content
corresponding to the cleat-
in/cleat-out threshold
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Desirable (ductile i.e. cleat-in/cleat-out) Undesirable (brittle i.e. chipping/fracturing)
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The device simulates pro athlete loads

 Peak load ~ 2.5x body weight (Kent et al., 2012)
* Load duration ~ 100 ms (Nigg et al., 1984)

 Loading angle 70-85° (Donatelli et al., 1999)
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Ductile Intermediate Brittle
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Surface performance of four 60-20-20 infield mixes
Mixes contain different clay + added quartz silt

Kaolinite + sesquioxides -

Fine-grained kaolinite 1

PA kaolinite =
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Chapter 2

Effect of sand content and clay mineralogy
on the brittleness of
drying baseball infield soils



Experiment:

- “Pure” clay minerals mixed w/ 55-80%
sand

- Kaolinite, illite, smectite

- 18 total mixtures

Objective:

Determine how clay mineralogy, sand
content, and water content interact to
govern the cleat-in-cleat-out effect

Coarse sand

Finesand Silt Coarse clay

l

Fine clay
(not visible at this scale)
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Methods

 Cleat mark test performed at =9 water contents per soil
bracketing 6

critical

* O..itic ChOsen from plot of DNE against O
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Sand content and clay type interact.

Sum. Sq. Deg. Fr. F-statistic

Intercept 3.1e+05 1 0.350
Sand % 4.3e+07 1 47.851
Clay type 1.0e+07 2 5.741
3
2

VWC (cubic spline term) 3.8e+07 14.228
Sand % x clay type 1.1e+07 6.248

Residual 1.5e+08 166 - -




Clay mineralogy and sand content interact to determine O;isical
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Clay mineralogy and sand content interact to determine O;isical

99

60

65

70

16

80

AT

g

j./.

o

e

oo

Z Dirichlet normal energy X 1,000

2

)
ot

-

e

.'..

40 30 20 10 40 30 20 ’IO 40 30 20 10 40 30 20 10 40 30 20 10 40 30 20 10
Volumetric water content (%)

lllite + I/S

Kaolinite

Smectite



Oritica VAries by clay mineralogy and sand content.

lllite + I/S Kaolinite Smectite
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Is there a fundamental basis to the cleat-
in/cleat-out effect?



An infield mix is a 4-phase system
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Transitional sand content
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Transitional sand content

Clay mineral Calculated sand content Maximum sand content to
from equation provide cleat-in/cleat-out

llite/I-S

Kaolinite

Smectite
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Illite, 75% sand




An infield mix is a 4-phase system
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Effective saturation
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Summary: Part |

» Lower water content boundary: brittle failure
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Summary: Part |

» Lower water content boundary: brittle failure

* Direct measurement of behavior change w/ water content
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Summary: Part |

» Lower water content boundary: brittle failure
* Direct measurement of behavior change w/ water content

» Clay minerals and sand content interact to govern 0.
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Summary: Part |

» Lower water content boundary: brittle failure
* Direct measurement of behavior change w/ water content
» Clay minerals and sand content interact to govern 6 i.a|

» To achieve CICOE, mg, < TSC and S, approaching 1
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Chapters 3-4

Toughness-water content relations using
unconfined compression tests



Toughness = energy needed to deform soil to failure

 governs the amount of damage done to the soil when @ high
water content

» Important for stable footing when soil is in ductile/plastic
condition
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Axial stress, kPa

Computing toughness for one sample
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Axial stress, kPa

Computing toughness for one sample
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Barnes toughness method

Rolling apparatus ‘

Thread maker f



Plastic limit
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“In order to classify clays according to their toughness it would be
necessary to determine the shearing resistance at the plastic limit

by means of a direct shearing test or an unconfined compression
test.”

-Casagrande (1932)
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ASTM D2166 provides little help re:
specimen preparation

"Specimens shall be prepared to the predetermined water content
and density prescribed by the individual assigning the test.”
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Research goals

* Develop a method to prepare specimens for unconfined
compression testing

» Test a suite of sand-clay mixtures to determine the how clay
mineralogy and sand content interact with soil water to
determine toughness
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Specimen preparation

* No standard method for remolded samples
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Specimen preparation

* Ideal method — optimum density; wet-dry cycle; re-wet

impractical
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Specimen preparation
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« Pack wet-of-optimum

impractical
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Specimen preparation

No standard method for remolded samples
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Specimen preparation

No standard method for remolded samples
|deal method — optimum density; wet-dry cycle; re-wet
Pack wet-of-optimum

Beginning penetrometer resistance of ~0.5 kg cm?

Extrude from steel sleeve

impractical
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Specimen preparation

No standard method for remolded samples
ldeal method — optimum density; wet-dry cycle; re-wet
Pack wet-of-optimum

Beginning penetrometer resistance of ~0.5 kg cm?

Extrude from steel sleeve

Dry series of samples to pre-computed masses
» Ensures adequate spread of data points

impractical
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Specimen shrinkage

Smectite Kaolinite lllite
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Stress-strain curves for a single soil
Numbers adjacent to curves denote sample water content.

400 -

300 - 10
© .
o
X
s
© 200 - 11
w
3 12
X
< | _

100 A . 13

;‘/ e 13
0| B= —
0 4 5 8 10 12 14 16 18 20

Axial strain, %




15 -

Toughness, kJ m>
)

20

30
Water content, g g_1 x 100

40




What toughness value to compare?

« Toughness is a function of water content
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What toughness value to compare?

» Must choose representative value for a given soil
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What toughness value to compare?

» PL widely used and understood; traditional brittle-ductile
threshold
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Predicted toughness at the plastic limit for sand-clay mixtures

lllite + I/S Kaolinite Smectite
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Maximum toughness varies by sand
content and interacts with clay type

* Toughness and shear strength increase with drying to ~PL, then
decrease once below PL (enhanced brittleness)
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Maximum toughness varies by sand
content and interacts with clay type

» Toughness and shear strength increase with drying to ~PL, then
decrease once below PL (enhanced brittleness)

- Similar to the findings by Barnes (2009, 2013), Teng (2020), and
Nagaraj (2016)
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Maximum toughness varies by sand
content and interacts with clay type

» Toughness and shear strength increase with drying to ~PL, then
decrease once below PL (enhanced brittleness)

« Similar to the findings by Barnes (2009, 2013), Teng (2020), and
Nagaraj (2016)

* More research needed to relate toughness to threshold water
content
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Overall summary and conclusions
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Overall summary and conclusions

* Lower boundary measured with cleat- mark test; upper
boundary is more difficult to define
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Overall summary and conclusions

* Range + stiffness may be expanded using higher-plasticity clay
but at the cost of maintenance & cracking potential
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Overall summary and conclusions

* Future directions:
» Develop simpler alternatives to cleat-mark test
 Relate ball response soil stiffness + plasticity
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Thank you!

il

Dr. Andrew McNitt Dr. Patrick Drohan Dr. Sridhar Komarneni Dr. Tong Qiu
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Thank you!

Ian Royer
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Hunter Finn
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Thank you!
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