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Better soil means easier maintenance
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Better soil means easier maintenance

10

But where do these thresholds lie??



Current ideas

• Total sand (55-75 %)

• Sand sizes (>2/3 medium + coarser)

• Silt-to-clay ratio (0.5-1)

Figure credit: DuraEdge Products 13



What happens when the soil gets wet?
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Problem statement

• Historically, building and maintaining the infield skin has 
been considered an art form.

• There is no available research on the cleat-in/cleat-out 
concept - specifically how it is governed by mixture 
components AND changes in water content. 

• But in order to test the soil, we first need something to 
measure!
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Objectives

• Develop novel laboratory tests which identify:
1. Lower boundary - water content corresponding to cleat-in/cleat-out 

threshold

2. Upper boundary - water content at which the soil can no longer 
provide adequate shear strength

• Apply new tests to experimental mixtures; evaluate effects of 
sand content and clay mineralogy on threshold water contents
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6 chapters:

• Cleat-mark method development

• Cleat-mark mixtures 

• Toughness method development

• Toughness mixtures 

• Sand properties effects on Atterberg limits (Parts I and II )
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Chapter 1

A laboratory method for measuring 
disturbance of baseball infield soil surfaces 

by cleated footwear

Submitted to Geotechnical Testing Journal



What happens when the soil gets wet dries out?
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Objective

- Create a laboratory method 
to measure water content 
corresponding to the cleat-
in/cleat-out threshold
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Desirable (ductile i.e. cleat-in/cleat-out) Undesirable (brittle i.e. chipping/fracturing)
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Desirable (ductile i.e. cleat-in/cleat-out) Undesirable (brittle i.e. chipping/fracturing)



The device simulates pro athlete loads

• Peak load ~ 2.5x body weight (Kent et al., 2012)

• Load duration ~ 100 ms (Nigg et al., 1984)

• Loading angle 70-85° (Donatelli et al., 1999)
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Ductile Intermediate Brittle
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Dirichlet Normal Energy
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Chapter 2

Effect of sand content and clay mineralogy 
on the brittleness of 

drying baseball infield soils
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Experiment:

- “Pure” clay minerals mixed  w/ 55-80% 
sand 

- Kaolinite, illite, smectite

- 18 total mixtures

Objective: 
Determine how clay mineralogy, sand 
content, and water content interact to 
govern the cleat-in-cleat-out effect



Methods

• Cleat mark test performed at ≥9 water contents per soil 
bracketing θcritical

• Θcritical chosen from plot of DNE against Θ
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Sand content and clay type interact.
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Is there a fundamental basis to the cleat-
in/cleat-out effect?
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An infield mix is a 4-phase system
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Transitional sand content
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Transitional sand content

Clay mineral Calculated sand content 

from equation

Maximum sand content to 

provide cleat-in/cleat-out

Illite/I-S 72.2 70-75

Kaolinite 75.3 75-80

Smectite 78.2 75-80
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57Illite, 75% sand



An infield mix is a 4-phase system
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Effective saturation
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𝑆𝑒 =
𝑉𝑤

𝑉𝑣
 = 

𝜃

𝑛
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Summary: Part I

• Lower water content boundary: brittle failure

• Direct measurement of behavior change w/ water content

• Clay minerals and sand content interact to govern θcritical
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Summary: Part I

• Lower water content boundary: brittle failure

• Direct measurement of behavior change w/ water content

• Clay minerals and sand content interact to govern θcritical

• To achieve CICOE, mSA < TSC and Se approaching 1
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Chapters 3-4

Toughness-water content relations using 
unconfined compression tests



Toughness = energy needed to deform soil to failure

68

• governs the amount of damage done to the soil when @ high 
water content

• Important for stable footing when soil is in ductile/plastic 
condition 



Computing toughness for one sample
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Computing toughness for one sample
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Barnes toughness method
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Thread maker

Rolling apparatus



Plastic limit
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“In order to classify clays according to their toughness it would be 

necessary to determine the shearing resistance at the plastic limit 

by means of a  direct shearing test or an unconfined compression 

test.“

 -Casagrande (1932)



ASTM D2166 provides little help re: 
specimen preparation

"Specimens shall be prepared to the predetermined water content 
and density prescribed by the individual assigning the test."  

76



Research goals

• Develop a method to prepare specimens for unconfined 
compression testing 

• Test a suite of sand-clay mixtures to determine the how clay 
mineralogy and sand content interact with soil water to 
determine toughness 
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Specimen preparation

• No standard method for remolded samples

• Ideal method – optimum density; wet-dry cycle; re-wet……impractical

• Pack wet-of-optimum

• Beginning penetrometer resistance of ~0.5 kg cm2

• Extrude from steel sleeve

• Dry series of samples to pre-computed masses 
• Ensures adequate spread of data points
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Specimen shrinkage

Smectite Kaolinite Illite



Video of compression test device
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Computing toughness for one sample
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Need to put example plot back in

• Toughness vs water content for a single soil – show nonlinear 
nature and maximum value at PL 
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What toughness value to compare?

• Toughness is a function of water content 

• Must choose representative value for a given soil

• Under the conditions of this study, maximum toughness does 
not occur at PL

• What is the best water content to choose? 
• PL still widely used and understood
• C.f. cleat-mark water content, though not relevant outside of baseball 

field soils context
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What toughness value to compare?

• Toughness is a function of water content 

• Must choose representative value for a given soil

• Under the conditions of this study, maximum toughness does 
not occur at PL

• PL widely used and understood; traditional brittle-ductile 
threshold

92



Computing toughness for one sample
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Computing toughness for one sample
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Computing toughness for one sample
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Maximum toughness varies by sand 
content and interacts with clay type

• Toughness and shear strength increase with drying to ~PL, then 
decrease once below PL (enhanced brittleness)

• Similar to the findings by Barnes (2009, 2013), Teng (2020), and 
Nagaraj (2016)

• Effects of additional wet-dry cycles? 
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Maximum toughness varies by sand 
content and interacts with clay type

• Toughness and shear strength increase with drying to ~PL, then 
decrease once below PL (enhanced brittleness)

• Similar to the findings by Barnes (2009, 2013), Teng (2020), and 
Nagaraj (2016)

• More research needed to relate toughness to threshold water 
content
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Overall summary and conclusions
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Overall summary and conclusions

• Lower boundary measured with cleat- mark test; upper 
boundary is more difficult to define

• Range may be expanded using higher-plasticity clay but at the 
cost of maintenance & cracking potential

• Future directions:
• Develop faster alternatives to cleat-mark test

• Relate ball response soil stiffness + plasticity
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Overall summary and conclusions

• Lower boundary measured with cleat- mark test; upper 
boundary is more difficult to define

• Range may be expanded using higher-plasticity clay but at the 
cost of maintenance & cracking potential

• Future directions:
• Develop simpler alternatives to cleat-mark test

• Relate ball response soil stiffness + plasticity
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Thank you!

Dr. Sridhar Komarneni Dr. Tong QiuDr.  Patrick DrohanDr. Andrew McNitt
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Thank you!

Ian Royer Hunter Finn



Thank you!
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